Study of intense cavitation-assisted electric discharge

A. Gutsol¹, Y. Mirochnik¹, A. Starikovskiy², S. Gershman³, S. Yatom³

¹LDS Technology Consultants, Inc., Warwick, PA, USA

²Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA ³Princeton Plasma Physics Laboratory, Princeton, NJ, USA

Abstract: In this contribution, we report electrical and optical measurements of the properties of the recently developed intense cavitation-assisted electric discharge (I-CAED) in water. In contrast to nanosecond CAED that develops in low-pressure two-phase cavitating flow and has rather low power density, I-CAED is a short nanosecond spark through a thin water layer that has high power density and strong emission in the UV range.

1. Introduction

An Intense Cavitation Assisted Electric Discharge (I-CAED) (Fig. 1), a recently discovered mode of a CAED, is very promising for economical water purification and disinfection by the realization of the Advanced Oxidation Process (AOP), while simple CAEDs are promising for plasma-chemical processes, e.g., effective generation of hydrogen peroxide (H_2O_2) from water or synthesis in hydrocarbon liquids. The physical properties of I-CAED are difficult to study because they change in the sequence of rather different events with a total duration of tens of nanoseconds.

Here, we use electrical measurements with nano-second resolution, high-speed imaging, and emission spectroscopy to estimate key properties of the water vapor plasma developed at different stages of I-CAED development.

Fig. 1. I-CAED generation system and a photo of a single nanosecond discharge.

2. Methods and Results

Discharges were generated in the flow of DI water using FID pulser FPG 20-1NM that generates "rectangular" 10 ns pulses with amplitude 5-20 kV and frequency < 1 kHz. For measurements of electric parameters, a long 50-Ohm coaxial cable was used with separation of the shield and

HV electrodes in the middle of the cable length. In this place, the HV signal was measured by a Tektronix HV probe, and the current through the shield electrode was measured by a current sensor with a time resolution of less than 2 ns. These measurements revealed two phases of discharge development. Thus, at the 17 kV pulser setting, the first phase, when two conductive channels grow in cavitating flows, has a duration of about 7 ns, while the current grows from 50 to 100 A, and power – from 1.3 to 2.2 MW. Then the second phase – breakdown of a thin water layer – happens during about 3 ns, current jumps to 200 A and power – to 3 MW.

To make sense of our spectroscopic results, we compare them with those presented in the paper [1], which demonstrated the time evolution of a spectrum obtained from a nanosecond micro-discharge in water. Initially, during water film breakdown, only a continuous bremsstrahlung spectrum is visible. Then, the continuous spectrum disappears while the linear spectrum appears. The total time of spectrum evolution in the paper exceeds 1 μ s, and atomic spectral lines just start to appear at the end of the current pulse that has a duration of about 300 ns [2].

A time-averaged emission spectrum of I-CAED shows a combination of a continuous spectrum caused by bremsstrahlung with a linear spectrum typical for the water-vapor plasma. For 17 kV power supply voltage, the continuous background has maximal intensity at 300 nm that corresponds to the average electron energy of about 4 eV [3]. Evaluation of the electron excitation temperature and electron concentration after subtraction of the continuous background using H_α and H_β lines gave the values $T_e = 0.54$ eV and $2.5 \cdot 10^{23}$ m⁻³, which may be attributed to the late phases of the spectrum evolution.

Acknowledgment

This material is based upon work supported by the U.S. Department of Energy (DOE), Office of Science under Award No. DE-SC0024444 and by the Princeton Collaborative Research Facility, supported by DOE under Contract No. DE-AC02-09CH11466.

References

 [1] A. Dorval et al., Plasma Sources Sci. Technol (2025).
[2] A. Dorval et al., J. Vac. Sci. Technol. A 40, 043006 (2022).

[3] Y. Raizer "Gas discharge physics" (1991).